Sampled limited memory methods for massive linear inverse problems
نویسندگان
چکیده
منابع مشابه
Feature-Enhancing Inverse Methods for Limited-View Tomographic Imaging Problems∗
In this paper we overview current efforts in the development of inverse methods which directly extract target-relevant features from a limited data set. Such tomographic imaging problems arise in a wide range of fields making use of a number of different sensing modalities. Drawing these problem areas together is the similarity in the underlying physics governing the relationship between that w...
متن کاملIll-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملLevel Set Methods for Geometric Inverse Problems in Linear Elasticity
In this paper we investigate the regularization and numerical solution of geometric inverse problems related to linear elasticity with minimal assumptions on the geometry of the solution. In particular we consider the probably severely ill-posed reconstruction problem of a twodimensional inclusion from a single boundary measurement. In order to avoid parameterizations, which would introduce a-p...
متن کاملOverlapping Domain Decomposition Methods for Linear Inverse Problems
We shall derive and propose several efficient overlapping domain decomposition methods for solving some typical linear inverse problems, including the identification of the flux, the source strength and the initial temperature in second order elliptic and parabolic systems. The methods are iterative, and computationally very efficient: only local forward and adjoint problems need to be solved i...
متن کاملDomain Decomposition Methods for Linear Inverse Problems with Sparsity Constraints
Quantities of interest appearing in concrete applications often possess sparse expansions with respect to a preassigned frame. Recently, there were introduced sparsity measures which are typically constructed on the basis of weighted l1 norms of frame coefficients. One can model the reconstruction of a sparse vector from noisy linear measurements as the minimization of the functional defined by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inverse Problems
سال: 2020
ISSN: 0266-5611,1361-6420
DOI: 10.1088/1361-6420/ab77da